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While fluid flows are known to promote dissolution of materials, such processes
are poorly understood due to the coupled dynamics of the flow and the receding
surface. We study this moving boundary problem through experiments in which hard
candy bodies dissolve in laminar high-speed water flows. We find that different initial
geometries are sculpted into a similar terminal form before ultimately vanishing,
suggesting convergence to a stable shape–flow state. A model linking the flow and
solute concentration shows how uniform boundary-layer thickness leads to uniform
dissolution, allowing us to obtain an analytical expression for the terminal geometry.
Newly derived scaling laws predict that the dissolution rate increases with the square
root of the flow speed and that the body volume vanishes quadratically in time, both
of which are confirmed by experimental measurements.
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1. Introduction

A broad class of natural and industrial processes involve the recession of solid
boundaries due to the action of flowing fluids. Examples include the corrosion
(Heitz 1991), erosion (Ristroph et al. 2012; Moore et al. 2013), ablation (Feldman
1959; Verniani 1961), melting (Hao & Tao 2002) and dissolution (Garner & Grafton
1954; Hanratty 1981; Daccord & Lenormand 1987) of materials. Often, the surface
morphologies that result from these processes reflect the nature of the flows present.
For dissolution specifically, the effects of flow can be seen across many scales, from
branched or scalloped mineral surfaces (Blumberg & Curl 1974; Daccord 1987;
Daccord & Lenormand 1987; Meakin & Jamtveit 2010) to vast cave and tunnel
networks found in karst landscapes (Ford & Williams 2007). By understanding the
physical principles behind their development, such geological features might be used
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to infer past environmental conditions. Furthermore, the same principles of flow-driven
dissolution could be put to use in the chemical (Garner & Grafton 1954; Garner &
Keey 1958; Linton & Sutherland 1960; Steinberger & Treybal 1960; Levich 1962;
Jeschke, Vosbeck & Dreybrodt 2001; Colombani 2008; Mbogoro et al. 2011) and
pharmaceutical industries (Nelson & Shah 1975; Grijseels, Crommelin & De Blaey
1981; Missel, Stevens & Mauger 2004; Dokoumetzidis & Macheras 2006; Bai &
Armenante 2009), which rely on the incorporation of solid compounds into solutions
within reactors and the human body.

As is clear from stirring sugar into coffee or tea, flows tend to speed up dissolution.
Earlier efforts to understand the effect of flows have focused on phenomenological
models that describe the bulk mass transfer rate for static surfaces (Garner & Keey
1958; Linton & Sutherland 1960; Steinberger & Treybal 1960; Nelson & Shah
1975; Grijseels et al. 1981; Missel et al. 2004). However, a complete account of the
dissolution dynamics must include the mutual influence of the solid and fluid phases:
the flow acts to modify the shape, which in turn alters the near-body flow, and so on.
Here, we aim to understand this shape–flow feedback, or moving boundary problem,
by establishing a clean experimental setting that is amenable to theoretical treatment.

2. Experimental shape dynamics

We focus on bodies of simple initial shapes dissolving within unidirectional flows,
with the hope of distilling principles that apply more generally. In particular, bodies
of size a∼ 1–10 cm made of hard candy are placed within water flows of speed U0∼
10–100 cm s−1. These scales yield a high Reynolds number Re= aU0/ν ∼ 104, where
ν is the kinematic viscosity of water. Typical dissolving rates are 1 cm h−1, indicating
that the boundary motion is many orders slower than the flow speed. Specifically,
amorphous solidified sugar – called hard candy in the USA or boiled sweets in the
UK – is made by heating an 8:3:2 mixture by volume of table sugar (sucrose), light
corn syrup and water to 302 F (150 ◦C) and casting within moulds. Dissolution occurs
within a water tunnel with test section 15 cm× 15 cm× 43 cm. Speed is continuously
monitored by a laser Doppler velocimeter, and temperature is kept at 28± 1 ◦C.

Considering first a spherical initial geometry, we find that dissolution sculpts a
unique shape that bears signatures of the flow. In figure 1(a), we show a photograph
of the body removed after 60 min of dissolution in a flow of speed 30 cm s−1. The
body is composed of a rounded front face, a facet that encircles the body and is
bounded by two ridges, and a flattened back side. While the front has been polished
smooth, both the facet and the back show surface irregularities, which are presumably
associated with unsteady local flow. To visualize the flow field, we seed the water
with microparticles (3M microbubbles), illuminate a plane with a laser sheet, and
capture time-exposed photographs. The streakline photograph of figure 1(b) shows that
the flow remains attached over the front surface of the body before separating at the
leading ridge of the facet. As illustrated in the schematic of figure 1(c), the back sits
within an unsteady wake, and the facet is associated with a quiescent region between
separation and the wake. We also use shadowgraph imaging to visualize variations
in the concentration of dissolved sugars (Garner & Hoffman 1961). The image of
figure 1(d) shows that the separation streamline carries a high solute concentration,
suggesting that dissolution along the front face is confined to a thin layer that is then
swept off the body.

We capture the development of these surface features using time-lapsed photography
and image analysis. The data of figure 2(c) show that the rounded face persists
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FIGURE 1. Dissolution of hard candy in flowing water. (a) The body starts as a sphere
of diameter 6 cm, and the photograph shows the shape after 60 min of dissolution
in a 30 cm s−1 flow (left to right). (b) Streaklines obtained by seeding the flow with
microparticles. (c) Schematic showing the outer flow (I), quiescent (II) and wake (III)
regions. The flow meets the body at the stagnation point (SP) and detaches at the
separation line (SL). (d) Shadowgraph imaging shows that highly concentrated solution
is swept off the body at the SL.

throughout the experiment, the back flattens relatively quickly, and the front and back
surfaces approach one another, causing the intervening facet to shrink over time. The
dynamics of the facet and the back appear to be closely related to the separated flow
and wake region. The front surface, where flow is attached, experiences the highest
dissolving rates and appears to be static in shape. However, careful inspection reveals
that initial irregularities are smoothed over, suggesting that the rounded final shape
is not simply a consequence of the initial shape. To test this idea, we consider a
body that presents a flat wall to the flow, in particular a cylinder with one end facing
upstream, as shown in figure 2(b), an arrangement that preserves axial symmetry.
Interestingly, the front is rounded over time, as shown in figure 2(d). The emergence
of this same final shape from different initial geometries suggests the existence of a
stable attracting state for the fluid–structure dynamics.

The approach to this terminal state can be quantified by measuring how the
dissolving rate varies both along the surface and at different times. In figure 2(e)
we plot the normal velocity of the receding interface as a function of the arc length
s along the spherical (top) and cylindrical (bottom) bodies. The rate is shown at
early (red) and later (blue) times, and the arc length at which flow separation occurs
is indicated by a vertical dashed line. For both geometries, the velocity is variable
along the front surface for early times, indicating a change of shape. For the sphere,
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FIGURE 2. Shape evolution during dissolution. (a,b) Bodies of different initial shapes –
a sphere and a cylinder with diameters of 6.0 and 6.9 cm, respectively – are presented
with a flow of speed 30 cm s−1 and photographed from below. (c,d) Interfaces displayed
every 6 min and colour-coded in time, with separation points indicated by the dotted line.
(e) Comparison of the recession rate at locations along the body for the sphere (top) and
cylinder (bottom) and at early (red) and late (blue) times. The arc length is 0 at the front
and 0.5 at the back of the body, and separation is marked by dashed vertical lines.

these variations are slight and seem to be associated with manufacturing defects.
For the cylinder, however, the rate is significantly lower near stagnation (s = 0) and
higher at separation, which tends to round the initially flat face. In all cases, the rate
along the front becomes more uniform at later times, thus tending to preserve the
shape. Indeed, this self-similar recession is apparent from the even spacing between
successive interfaces of figure 2(c,d) at later times.

3. Scaling laws

An understanding of these dynamics requires a model of how the concentration and
flow fields affect dissolution. In the absence of flow, the solute simply diffuses and
the boundary recedes at a rate given by Fick’s law, vn=−D∂c/∂n (Garner & Suckling
1958; Garner & Hoffman 1961; Duda & Vrentas 1971). Here, D is the molecular
diffusivity, c is the concentration of dissolved material and n is the surface normal. In
the presence of flow, the washing away of solute tends to increase the concentration
gradient and thus enhance the dissolution (Grijseels et al. 1981). Similar ideas hold
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FIGURE 3. Schematics of the flow and concentration fields. (a) The steady outer flow
consists of fresh water, while the attached flow near the body forms a boundary layer
(dashed line) containing dissolved material. (b) Zoomed-in view of the momentum and
concentration boundary layers (not to scale), the former defined by the flow velocity and
the latter by the solute.

for forced thermal convection, where temperature is analogous to concentration and
flow enhances the transfer of heat (Schlichting & Gersten 2000). For the mass transfer
problem considered here, however, the flux of solute is associated with a change of
shape and thus a change in the surrounding flow. As shown in figure 3(a,b), the
attached flow along the front forms a momentum boundary layer of thickness δm in
which the velocity rises from zero to a local outer flow value U(s) (Childress 2009).
Similarly, the dissolved material is confined to a concentration boundary layer of
thickness δc (Schlichting & Gersten 2000). The arrangement of these layers depends
on the relative importance of viscosity ν and diffusivity D, whose ratio is the Schmidt
number Sc = ν/D (or Prandtl number Pr in thermal convection), and we estimate
Sc∼ 103 in our experiments. Using an analogous relationship from thermal convection
(Schlichting & Gersten 2000), we expect that δc/δm ∼ Sc−1/3 ∼ 0.1. Thus, high Sc
indicates that viscosity dominates diffusion, and the solute is confined well within
the flow boundary layer.

By considering how the boundary layer depends on the body size, we can
incorporate the shape–flow interaction into scaling laws. For a flow of speed U0
past a body of size a, the Prandtl boundary-layer equations indicate δm ∼ √νa/U0
(Schlichting & Gersten 2000). On retaining only the dependence on a and U0 and
using δc∼ δm from above, the interfacial velocity is then vn∼ 1/δc∼√U0/a. The body
volume V∼a3 satisfies dV/dt∼vna2∼√U0V , and integration yields V/V0= (1− t/tf )

2,
where V0 is the initial volume and tf ∼ U0

−1/2 is the total time to vanish. To assess
these predictions, we use the measurements of figure 2(c) to extract volume over
time, and figure 4(a) shows that the volume indeed vanishes quadratically in time.
To test the relationship tf ∼ U0

−1/2, we conduct experiments at different flow speeds
and infer tf from the measured volume dynamics. As shown in figure 4(b) and its
inset, the time to vanish indeed scales with the flow speed as predicted. Further, these
arguments indicate that the boundary layer thins as the body shrinks, which accounts
for the greater vn observed at later times, as shown in figure 2(e).

We note that these power laws can alternatively be derived through the scaling of
the Sherwood number Sh= a∂c/∂n, which is defined to be the ratio of convective to
diffusive material flux. In thermal convection, the Nusselt number Nu is analogous to
the Sherwood number and measures the ratio of convective to conductive heat flux.
Hence the well-known relationship for the thermal problem Nu∼ Re1/2Pr1/3 becomes
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FIGURE 4. Scaling laws for dissolution in flow. (a) Decrease in volume over time for an
initial sphere. Experimental measurements (solid curve) agree closely with the predicted
power law (dashed curve). Inset: logarithmic-scale plot of normalized volume and time.
(b) Total time to vanish as a function of flow speed for experiments (dots) and theory
(dashed line). Inset: logarithmic-scale plot.

Sh ∼ Re1/2Sc1/3 for our mass transfer problem. By the definition of the Sherwood
number and Fick’s law, and focusing on the dependence on a and U0, we conclude
that Sh= a∂c/∂n∼−avn ∼ Re1/2 ∼ (aU0)

1/2, which leads to vn ∼U1/2
0 a−1/2 and gives

the same scaling laws.

4. Two-dimensional theory for the terminal shape

To understand the terminal form seen in the experiments, we now extend our
boundary-layer model to account for how the solute flux varies along the surface of
the body. For this analysis, we are guided by the idea that uniform flux tends
to preserve shape during dissolution (see figure 2e). Near stagnation, the flow
accelerates as it deflects around the body, and the local outer flow takes the form
U(s)∝ sα, where α depends on the geometry. Such flows are well-studied in thermal
convection (Mahmood & Merkin 1988; Sparrow, Eichhorn & Gregg 2004), and here
the proportionality δc(s) ∝ δm(s) is exact. Furthermore, similarity solutions to the
Prandtl equations reveal how these boundary-layer thicknesses vary along the body,
δc(s) ∝ δm(s) ∝ √s/U(s) (Schlichting & Gersten 2000; Sparrow et al. 2004). The
solute flux is inversely proportional to δc, and so for uniform flux we require that
δc is independent of s, giving U(s) ∝ s. Stagnation flow on a flat wall satisfies this
condition and, indeed, this result helps to explain the flat nose of figure 2(c,d). More
generally, the boundary-layer equations depend on the geometry only through the
outer flow, and so any body with U(s)∝ s along its front will dissolve uniformly. In
particular, this condition provides a way to find shape-preserving finite bodies, where
it becomes important to consider the effect of flow separation.

While the complexity of three-dimensional separated flows usually precludes
analytical techniques, progress can be made in two dimensions through the use
of free-streamline theory (FST). In this model, free streamlines emanate from the
body and enclose a stagnant wake, outside of which the flow is ideal (inviscid and
irrotational) and can thus be represented by an analytic function u− iv=U0 exp(−iΩ)
(Hureau, Brunon & Legallais 1996; Moore et al. 2013). Here, Ω = φ + iψ is the
log-hodograph variable, where φ and ψ represent the flow direction and speed
respectively. This flow and the paths of the free streamlines must be determined
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simultaneously, and most often FST is used as a numerical method to calculate the
flow around a known shape. Here, however, we seek to find a body that dissolves
uniformly by imposing U(s)∝ s, thus placing a boundary condition on the flow speed.
Surprisingly, FST is particularly well suited for this inverse problem, which will allow
us to obtain an analytical expression for the terminal geometry.

To begin, we conformally map the flow domain to the interior of the upper half-disk
(Moore et al. 2013). The surface of the body maps to the half-disk perimeter, z =
exp(iθ), via

ds
dθ
= 1

2
s0 |sin 2θ | exp (−ψ), (4.1)

where s0 is the distance to separation. It should be noticed that this map depends on
ψ directly. In the classical problem of flow past a given shape, only the flow direction,
φ, is known along the boundary and thus the conformal map must be determined
iteratively. Here, however, we seek a geometry that satisfies U(s)∝ s along its front
surface, thus placing boundary conditions on ψ and rendering (4.1) explicit. In this
sense, the inverse problem is actually simpler than the direct problem. In addition to
(4.1), the free streamlines map to the real segment, z ∈ [−1, 1], with the boundary
condition U=U0, which results from the assumption of a stagnant wake (Moore et al.
2013).

In the mapped domain, the boundary conditions become

ψ(z)= log |cos θ | for z= exp(iθ), θ ∈ [0,π], (4.2)
ψ(z)= 0 for z ∈ [−1, 1]. (4.3)

These conditions form a Riemann–Hilbert problem for Ω=φ+ iψ (Fokas & Ablowitz
2003), which can be solved exactly using techniques of complex analysis (to be
reported separately). By evaluating the flow direction, φ, on the boundary, we obtain
the surface tangent angle of the terminal geometry as

φ =π/2− (Li2(ŝ)− Li2(−ŝ))/π. (4.4)

Here, ŝ = s/s0 ∈ [0, 1] is the arc length scaled on the distance to separation, and
Li2(ŝ) =

∑∞
k=1 ŝk/k2 is the polylogarithm of second order. We show this geometry

in figure 5(a), where we also indicate the flow streamlines as computed by FST. As
seen in the figure, the terminal shape is similar to a circular arc, with nearly constant
curvature along the front. Furthermore, (4.4) predicts that the flow will separate at
an angle of precisely 45◦ with the horizontal. While this analytical solution does not
address the body’s back, it suggests that, for sufficiently high Re and Sc, the terminal
shape is independent of scale and system parameters, such as material diffusivity or
flow speed.

The predicted front surface from our 2D theory can be qualitatively compared with
the 3D experiments by fitting circles to the interfaces of figure 2(c,d). In figure 5(b),
we overlay the terminal shapes and the fit, showing that the front surfaces indeed
have nearly constant curvature. The approach to this shape can be further quantified
by measuring the front aspect ratio, as defined in the inset of figure 5(c). Interestingly,
the sphere and cylinder data sets approach a similar value from above and below
respectively, offering evidence that this final shape is a stable attractor for a broad
basin of initial geometries.

We note that, strictly speaking, a uniform dissolution rate does not imply shape
preservation for bodies with variable curvature. Rather, variations in curvature must
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FIGURE 5. The terminal shape of a dissolving body. (a) Two-dimensional FST predicts
a shape of nearly constant curvature along its front. (b) Fitting a circle to the late-time
experimental interfaces also reveals fronts of nearly constant curvature for initial shapes of
a sphere and an axially aligned cylinder. (c) The frontal aspect ratios of these two initial
conditions converge to similar terminal values.

be balanced by variations in the interface velocity, as given by (A32) of Moore et al.
(2013). However, the nearly constant curvature of the body described by (4.4), as well
as the qualitative agreement with the experiments, justifies the use of uniform flux as
an approximate working condition.

5. Discussion

Although not addressed by our theory, the experiments show that the body develops
a surprisingly flat back. This feature might be related to the rapid mixing of solute
that occurs in the body’s wake. With sufficient mixing, the coarse-scale concentration
might homogenize across the width of the wake while decaying in the downstream
direction, thus creating a gradient aligned with the flow. Any curved surface immersed
in such a field would experience non-uniform flux and thus change shape, but a flat
surface would recede uniformly. These ideas could be tested using direct numerical
simulations that resolve the wake flow. Simulations may also explain why our
arguments based on attached boundary layers give a good account of the shrinkage
of the entire body, even though significant dissolution occurs in the separated flow
region of the rear. Because the typical wake flow speed is set by the imposed speed,
it may be that local boundary layers in the back obey similar scaling laws.

The central principle at work during flow-driven dissolution seems to be progression
towards a state of uniform material flux. This result can be intuited by considering the
effect of local surface perturbations. For example, a protrusion is expected to thin the
boundary layer, increasing the concentration gradient, which increases the dissolution
rate and causes the perturbation to retreat. In light of this shape–flow feedback, it
is interesting to compare dissolution with other moving boundary problems, such
as erosion. Hydrodynamic erosion is dictated by fluid shear stress that acts to
remove surface particles, and recent work from our group shows that the terminal
state involves a wedge-like (2D) or conical (3D) front surface that retreats uniformly
(Ristroph et al. 2012; Moore et al. 2013). The different terminal shapes for dissolution
and erosion reflect different physical mechanisms at work. However, both proceed to
a state of uniform material removal rate, suggesting a principle that may apply even
more generally, such as during melting (Hao & Tao 2002), corrosion (Heitz 1991)
and ablation (Feldman 1959; Verniani 1961).

For melting in particular, the recession rate of the interface is proportional to the
heat flux (Vanier & Tien 1970), and hence uniform thermal boundary-layer thickness

765 R3-8



Shape dynamics and scaling laws for a body dissolving in fluid flow

would serve as a condition for self-similar evolution. Interestingly, experiments (Hao
& Tao 2002) on ice melting in flow bear a close resemblance to ours, including the
formation of a rounded front and flattened back, as well as an accelerating interface
velocity. Unlike dissolution, melting can be influenced by conduction within the solid
and latent heat associated with the phase transition. Furthermore, for ice melting in
water, the Prandtl number is of order one, indicating that the thermal boundary layer
may not be well confined within the momentum layer. It is possible that different
scaling laws may apply in this regime.

Finally, the case considered here represents an intermediate case between the two
well-studied extremes of dissolution in stagnant fluid and in highly agitated flows. In
the absence of flow, diffusion alone acts and dissolution proceeds slowly (Garner &
Suckling 1958; Garner & Hoffman 1961; Levich 1962; Duda & Vrentas 1971). In
mixed flows, it is assumed that diffusion occurs across a layer near the body, although
the factors that determine its thickness are typically determined empirically (Noyes
& Whitney 1897; Garner & Keey 1958; Linton & Sutherland 1960; Steinberger &
Treybal 1960; Levich 1962; Nelson & Shah 1975; Grijseels et al. 1981; Missel et al.
2004). Our work links dissolution directly to hydrodynamics, an approach that allows
for estimation based only on the relevant scales. For example, flow of speed U0 over
a body of size a yields a recession velocity of vn ∼ D/δc ∼ Sc1/3D

√
U0/νa. As a

whimsical application, this scaling allows us to address the following long-standing
question: ‘How many licks does it take to get to the centre of a lollipop?’ For candy
of size a∼ 1 cm licked at speed U0∼ 1 cm s−1, we estimate a total of U0/vn∼ 1000
licks, a prediction that is notoriously difficult to test experimentally.
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